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A Kummer Extension

279131255861 b19 + 139394830991 b18 4 60448487777 b17 4 280219029161 b16 +

371131200000 ~'1 371131200000 ~1 123710400000 ~1 371131200000 ~'1

94145035483 b15 + 44239217807 b14 + 4438720949 b13 + 70969469297 b12 +
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3749 3 2 7 5997 119
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24742080000 ~1 2749120000 ~1 24742080000 1 224928000 ~'1
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12377219074709000 béll + 2474210380000 b% + 34361:&0000 b% + 1288(155000 bl’ iéggggg(l)g b%g +
174000 P1° T 2780000 21 + 174000 21° + T6geoa000 21 T Teseoeo00 O T
toseoe000 21”1 sasasonoo D1+ Torroon 21 T sitono DI’ + Traaeaco b1 +
33228;00 b? + 7616387010100 bz + 84322(1)00 bfls + 162232300 b? + 21098279000 bzll +
1686‘_1)6000 b% + 2811(130000 b%’ gggggggg b%g + gggiéggg b%s + é?igggg b%7 +
19000006 21° + S804000 21 + asacoo0 21 T asooon 21 + 72s000 OL +

26501 411 607 110 52387 19 5903 ;8 6311 7 667 6
1728000 bl + 36000 bl + 31680(%00 bl + 23730000 bl _|2_6§3008000 bl + 19008000 bl +
3401 45 1319 14 3 4842 119 14 7 49
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1 4 702 p19 | 19418 | 7 p17 1891 p15 | 11 p14 | 1 413 | 3 412 6
13750 b17 1375 bl + 25 bl + 25 bl + 2750 bl + 125 bl + 25 bl + 22 bl +
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Can we write the ring of integers of Q (§57 \5/23), denoted (C)@(C&\S/ﬁ)' as
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Can we write Q@(Cs,%) as Z [(s] [o]?
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Let M be an extension of a number field L. We say M is monogenic
relative to L if O [a] = Op. In this case we say that Oy admits a
power ©;-integral basis. If L = Q, we simply say M is monogenic and
Oy admits a power integral basis.

As we've seen, all quadratic fields and cyclotomic fields are monogenic.

Dedekind was the first person to give an example of a non-monogenic
field: Q(c) where a is a root of x> — x? — 2x — 8. We'll return to
Dedekind's ideas.

When are Kummer extensions (and more generally radical,
e, extensions) monogenic?
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Main Result for Kummer Extensions

Theorem (Smith)

Let p be a rational prime. Note (1 — (,) is the unique prime of Z[(,)
above p. Let a € Z[(p], and suppose that xP — « is irreducible in
Z[Cp)[x]. Consider Q ((p, ¥/). The ring of integers QQ(CWW) is
Z[Cp] [¥/a] if and only if o is square-free as an ideal of Z[(,] and the
congruence

af = amod (1 — ¢,)? (1)

is not satisfied.
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Main Result for Kummer Extensions

Marie-Nicole Gras' has shown that the only monogenic cyclic extensions
of Q of prime degree > 5 are maximal real subfields of cyclotomic fields.

Over Q(¢p), however, we can construct infinitely many cyclic extensions
of degree p that are monogenic.

Specifically, Q (Cp, B(1 — Cp)) is monogenic over Q(¢{,) with generator
¢/B(1 — (p) for any square-free § that is prime to 1 — (.

IM.-N. Gras. Non monogénéité de I'anneau des entiers des extensions cycliques de Q
de degré premier | > 5. J. Number Theory, 23(3):347-353, 1986.
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The Main Result

Let L be a number field and o« € ©; be such that x" — « is irreducible
over L. For a prime p of O, we write p for the residue characteristic and
f for the residue class degree. If p divides n, we factor n = p*m with
ged(m, p) = 1. Define € to be congruent to e modulo f with 1 < e < f.
The Wieferich congruence becomes

a? " = o mod p2. (2)

In the case where e < f, this is
o = a mod p2.
Theorem (Smith)

The ring of integers of L (y/a) is O [/« if and only if o is square-free
as an ideal of ©O; and every prime p dividing n does not satisfy
Congruence (2).
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Non-monogeneity of Kummer Extensions

Theorem (Smith)

Denote Q (¢, /) by K, and suppose there exists a rational prime (
such that { =1 mod n and ( < n- ¢(n). Suppose further that o € Z[(,]
is relatively prime to [ and that « is an n*" power residue modulo some
prime of Z[(,] above (. Then K is not monogenic over Q. Moreover, (
is an essential discriminant divisor, i.e., [ divides [Oy : Z[0]] for every 0
such that Q(0) = K.
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Theorem

Let f(x) € Z[x] be monic and irreducible, let 0 be a root, and let

L =Q(0) be the number field generated by 0. If p € Z is a prime that
does not divide [Oy : Z[0]], then the factorization of p in O, mirrors the
factorization of f(x) modulo p. That is, if

f(x) = p1(x)% - o, (x)* mod p

is a factorization of f(x) into irreducibles in Fp[x], then p factors into
primes in O, as

p=pi-py

Moreover, the residue class degree of p; is equal to the degree of ;.
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Theorem (Dedekind?)
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2We employ a generalization due to Kumar and Khanduja.
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Dedekind’s Index Criterion

Theorem (Dedekind?)

Let f(x) be a monic, irreducible polynomial in Z[x], 6 a root of f, and
L=Q(0). If p is a rational prime, we have

F(x) = [T () mod p,
i=1

where the f;(x) are monic lifts of the irreducible factors of f(x) to Z[x].
Defi r
o F() = T ()°
i=1

p

d(x) =

———ei—1

Then p divides [O, : Z[0]] if and only if gcd (f,-(x) ,d(x)) £1 for

some i, where we are taking the greatest common divisor in Fp[x].

2We employ a generalization due to Kumar and Khanduja.
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Relating Monogeneity and Ramification

Lemma (Smith)

Let L be a number field, f € O[x] a monic, irreducible polynomial, and
0 a root of f. Let M be a finite extension of L. Suppose that f(x) is
irreducible in M[x] and M is unramified over L at all the primes dividing
Af. Then @L(g) =S @L[Q] if and on/y If@M(g) = (Q/\/][@]

Idea: Extensions that are unramified at the primes dividing A¢
don't affect the monogeneity of f(x).
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The setup of previous theorem is summarized below.

M(6)

p M / L(6)
unramifiex \ /
p L
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Further Questions

Can we use monogeneity to recover other arithmetic
information about these number fields?

Are there further insights from a sheaf-theoretic perspective on
these results?
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Thank You

Thank you for listening. Please send me an email at
hanson.smith@colorado.edu if you have any questions that aren’t
answered here.

A preprint is available on my website,
http://math.colorado.edu/~hwsmith /research.html,
and on the arXiv at
https://arxiv.org/abs/1909.07184.
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