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A Quadratic Field

Consider Q
(√

17
)
.

The discriminant is 17, so 17 is the only ramified prime.

A prime p other than 17 splits if and only if 17 ≡ a2 mod p.

The ring of integers is Z
[

1+
√

17
2

]
.
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A Cyclotomic Field

Consider Q (ζ5).

The discriminant is 53, so 5 is the only ramified prime.

The inertia degree of a prime p other than 5 is the least positive integer

f such that pf ≡ 1 mod 5.

The ring of integers is Z [ζ5].
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A Kummer Extension

Consider Q
(
ζ5,

5
√

23
)
.

The discriminant is 523 · 2316, so 5 and 23 are the only ramified primes.

The inertia degree of a prime p of Z [ζ5] other than the primes above 5

and 23 is the least positive integer f such that 23f ≡ x5 mod p is

solvable.

The ring of integers...
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A Kummer Extension

Can we write the ring of integers of Q
(
ζ5,

5
√

23
)
, denoted OQ(ζ5,

5√23), as

Z[α] for some α?

Can we write OQ(ζ5,
5√23) as Z [ζ5] [α]?
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Monogeneity

Let M be an extension of a number field L. We say M is monogenic

relative to L if OL[α] = OM .

In this case we say that OM admits a

power OL-integral basis. If L = Q, we simply say M is monogenic and

OM admits a power integral basis.

As we’ve seen, all quadratic fields and cyclotomic fields are monogenic.

Dedekind was the first person to give an example of a non-monogenic

field: Q(α) where α is a root of x3 − x2 − 2x − 8. We’ll return to

Dedekind’s ideas.

When are Kummer extensions (and more generally radical,
n
√
•, extensions) monogenic?
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Results



Main Result for Kummer Extensions

Theorem (Smith)

Let p be a rational prime. Note (1− ζp) is the unique prime of Z[ζp]

above p.

Let α ∈ Z[ζp], and suppose that xp − α is irreducible in

Z[ζp][x ]. Consider Q (ζp, p
√
α). The ring of integers OQ(ζp, p

√
α) is

Z[ζp] [ p
√
α] if and only if α is square-free as an ideal of Z[ζp] and the

congruence

αp ≡ α mod (1− ζp)2 (1)

is not satisfied.
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Main Result for Kummer Extensions

Marie-Nicole Gras1 has shown that the only monogenic cyclic extensions

of Q of prime degree ≥ 5 are maximal real subfields of cyclotomic fields.

Over Q (ζp), however, we can construct infinitely many cyclic extensions

of degree p that are monogenic.

Specifically, Q
(
ζp,

p
√
β(1− ζp)

)
is monogenic over Q(ζp) with generator

p
√
β(1− ζp) for any square-free β that is prime to 1− ζp.

1M.-N. Gras. Non monogénéité de l’anneau des entiers des extensions cycliques de Q
de degré premier l ≥ 5. J. Number Theory, 23(3):347–353, 1986.
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The Main Result

Let L be a number field and α ∈ OL be such that xn − α is irreducible

over L.

For a prime p of OL, we write p for the residue characteristic and

f for the residue class degree. If p divides n, we factor n = pem with

gcd(m, p) = 1. Define ε to be congruent to e modulo f with 1 ≤ ε ≤ f .

The Wieferich congruence becomes

αpf−ε+e

≡ α mod p2. (2)

In the case where e ≤ f , this is

αpf

≡ α mod p2.

Theorem (Smith)

The ring of integers of L ( n
√
α) is OL [ n

√
α] if and only if α is square-free

as an ideal of OL and every prime p dividing n does not satisfy

Congruence (2).
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Non-monogeneity of Kummer Extensions

Theorem (Smith)

Denote Q (ζn, n
√
α) by K, and suppose there exists a rational prime l

such that l ≡ 1 mod n and l < n · φ(n).

Suppose further that α ∈ Z [ζn]

is relatively prime to l and that α is an nth power residue modulo some

prime of Z [ζn] above l. Then K is not monogenic over Q. Moreover, l

is an essential discriminant divisor, i.e., l divides [OK : Z[θ]] for every θ

such that Q(θ) = K.
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Proof Ideas and New Ingredients



Dedekind’s Splitting Criterion

Theorem

Let f (x) ∈ Z[x ] be monic and irreducible, let θ be a root, and let

L = Q(θ) be the number field generated by θ.

If p ∈ Z is a prime that

does not divide [OL : Z[θ]], then the factorization of p in OL mirrors the

factorization of f (x) modulo p. That is, if

f (x) ≡ ϕ1(x)e1 · · ·ϕr (x)er mod p

is a factorization of f (x) into irreducibles in Fp[x ], then p factors into

primes in OL as

p = pe1
1 · · · p

er
r .

Moreover, the residue class degree of pi is equal to the degree of ϕi .
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Dedekind’s Index Criterion

Theorem (Dedekind2)

Let f (x) be a monic, irreducible polynomial in Z[x ], θ a root of f , and

L = Q(θ).

If p is a rational prime, we have

f (x) ≡
r∏

i=1

fi (x)ei mod p,

where the fi (x) are monic lifts of the irreducible factors of f (x) to Z[x ].

Define

d(x) :=

f (x)−
r∏

i=1

fi (x)ei

p
.

Then p divides [OL : Z[θ]] if and only if gcd
(
fi (x)

ei−1
, d(x)

)
6= 1 for

some i, where we are taking the greatest common divisor in Fp[x ].

2We employ a generalization due to Kumar and Khanduja.
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Relating Monogeneity and Ramification

Lemma (Smith)

Let L be a number field, f ∈ OL[x ] a monic, irreducible polynomial, and

θ a root of f .

Let M be a finite extension of L. Suppose that f (x) is

irreducible in M[x ] and M is unramified over L at all the primes dividing

∆f . Then OL(θ) = OL[θ] if and only if OM(θ) = OM [θ].

Idea: Extensions that are unramified at the primes dividing ∆f

don’t affect the monogeneity of f (x).
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The setup of previous theorem is summarized below.

M(θ)

p

unramified

M L(θ)

p L
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Further Questions



Further Questions

Can we use monogeneity to recover other arithmetic

information about these number fields?

Are there further insights from a sheaf-theoretic perspective on

these results?
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Thank You

Thank you for listening. Please send me an email at

hanson.smith@colorado.edu if you have any questions that aren’t

answered here.

A preprint is available on my website,

http://math.colorado.edu/∼hwsmith/research.html,

and on the arXiv at

https://arxiv.org/abs/1909.07184.
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